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Charged dust particulates, forming a layered crystal in the electrode sheath of a rf discharge, are known to
show vertical alignment and an onset of characteristic oscillations below a threshold of neutral gas density.
Here forces on the particulates due to the formation of positive space-charge clouds below the dust particles are
calculated from Monte Carlo calculations of the ion motion in the sheath. The forces are shown to be attractive
and nonreciprocal for the different crystal layers. From the Monte Carlo results an analytical lattice model is
derived that quantitatively explains the experimental findings.@S1063-651X~96!06710-4#

PACS number~s!: 52.25.Vy, 52.35.2g, 62.30.1d, 52.65.2y

I. INTRODUCTION

Wigner crystallization of micrometer ‘‘dust’’ particles has
attracted much interest in the field of plasma physics re-
cently. The dust particles acquire high negative charges like
floating probes and interact by means of their Coulomb re-
pulsion. If the Coulomb energy of neighboring particles by
far exceeds their thermal energy, the particles arrange in or-
dered solidlike structures. The existence of these so-called
plasma or dust crystals was predicted by Ikezi@1#. Experi-
mentally they were found in magnetron rf discharges@2–4#
and in parallel plate rf discharges@5–7#. The dust crystal is
trapped in the sheath of the lower electrode where the elec-
tric field force on the particles balances the force of gravity.
The particles usually form a flat crystal of about 1003100
elementary cells width, but of only a few layers thickness. In
the horizontal plane, these crystals show hexagonal order as
usually found in two-dimensional~2D! systems, but in the
vertical direction the particles are aligned rather than being
arranged in close-packed structures@4,7#. Close-packed
structures are expected for 3D crystals as well as for laterally
infinite crystals having two or more layers embedded in a
uniform positive background@8,9#. For screened potentials
this aligned structure cannot be established as well@10#.

Another peculiarity of the plasma crystal is observed
when the density of the filling gas is reduced. Then the dust
particles acquire high random kinetic energies~i.e. high tem-
peratures! below a certain pressure threshold@11,12#. Due to
this increase in dust temperature the plasma crystal performs
a phase transition from the solidlike structure to a liquid
state. At this phase boundary self-excited oscillations of the
particles in the plasma crystal appear. These oscillations are
interpreted in Refs.@11,13# as a precursor of the temperature
increase, in the sense that the oscillations originate from a
plasma instability and grow more and more violent finally
leading to the strong erratic dust particle motion. In Ref.
@12#, however, the oscillations are attributed to the mixed
two- and three-dimensional nature of the crystal or as a new
intermediate state of the melting transition. It is known@11#
that the described phase transition is observable for plasma
crystals of two or more layers only. So we restrict further
discussion to the case of a two-layer crystal, for simplicity.

The observed oscillations have the following features@13#.
Vertical pairs of particles oscillate horizontally about their
aligned equilibrium position at a frequency of about 13 Hz.
The oscillation amplitude of the lower particle is about twice
that of the upper one and the upper particle has a phase lead
of about 45°630°. These oscillations suddenly appear below
a certain pressure threshold. At this pressure all externally
forced oscillations are damped within milliseconds.

To understand this unexpected behavior of alignment and
oscillations of the plasma crystal one has to investigate the
interparticle forces in the sheath of a rf discharge. Particles
of radiusR attain a chargeZe5RUf in the plasma environ-
ment ~cgs units are used here!, whereUf is the floating po-
tential of the particle. The measured charges areZ.104 for
R54.7 mm particles@6,7,11#.

‘‘Drag’’ forces on such particles due to external fields and
screening of the particles have been studied in several inves-
tigations@14–17#. The interparticle potential in a quasineu-
tral plasma can be described by a Debye-Hu¨ckel law @18#.
However, these forces cannot be applied to the problem of
alignment and oscillations because in the sheath, where the
dust crystal is located, the plasma is strongly non-neutral.
Furthermore, one has to know not only the forces due to
external fields, but also interparticle forces arising from de-
viations from the equilibrium particle position in direction of
the external field and perpendicular to it.

The formation of space-charge regions below the dust
particles by ion focusing in the sheath as a possible explana-
tion of the alignment was also put forth by Melandso” and
Goree@19# and by Vladimirov and Nambu@20#. But their
collisionless models have only limited applicability in the
region of pressures considered here and resulting forces on
the particles were not calculated from such models.

So an explanation of the mechanism of the unstable oscil-
lations as well as a convincing proof that the vertical align-
ment is energetically more favorable than close-packed
structures are still lacking. For this reason, we will present
here Monte Carlo~MC! calculations of the ion streaming
motion in the sheath in the presence of a two-layer dust
crystal for conditions found in our experiments. The forma-
tion of ion space-charge clouds on the downstream side of
the particles is found to persist even under the collisional
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conditions. Forces on the particles are calculated from the
ion trajectories. Based on these MC results an analytical
crystal model introducing an additional crystal layer of posi-
tive ‘‘cloud’’ charges is presented. This model is used to
study quantitatively the vertical alignment and the oscillation
characteristics as a consequence of a plasma-induced insta-
bility. A simplified 1D version of this model was discussed
in @13#.

The Monte Carlo model is presented in Sec. II and the
results are discussed in Sec. III. The analytical crystal model
is derived in Sec. IV. The unstable oscillations are discussed
in Sec. V and compared with the experiment. Conclusions
are presented in Sec. VI.

II. MONTE CARLO MODEL
FOR THE ION MOTION CALCULATION

The system of a two-layer plasma crystal with hexagonal
order in the horizontal plane and vertically aligned particles
in the sheath of an rf discharge is considered~see Fig. 1!. To
give numbers we adopt the experimental values of Melzer
et al. @11,13#. The results of our calculations can also easily
be applied to other experiments@5,12# because the experi-
mental conditions are similar.

In these experiments a rf discharge is operated in helium
at a pressure ofp 5 30–150 Pa and a power input of 12 W.
The plasma crystal is formed by spherical, monodisperse
particles ofR54.7 mm radius and massM56.73310213

kg with a negative potential of2Uf 5 2–5 V corresponding
to Z 5 6000–15 000 elementary charges. For the MC
calculations a potential of25 V is used unless stated
otherwise. The interparticle distance in the horizontal plane
is a5450 mm and in the vertical direction
d5360 mm5 0.8a. The frictional dampingn exerted by the
neutral gas background on the dust grains isn. 12 s21 at
30 Pa@21#.

We restrict our approach here to a non-self-consistent de-
scription of our problem in three dimensions, which means
that ion-ion interactions are neglected and the charge on the
particles is fixed rather than being determined from the elec-
tron and ion flux onto it. A self-consistent approach is be-
yond our present computational power, but the experimental
results for the parameters of a layered crystal such as the
particulate charge, interparticulate distance, and interlayer
spacing permit us to simplify our model description.

The ion flux entering through the plasma-sheath boundary
is assumed to be horizontally uniform. The ions are acceler-
ated in the sheath by a strong electric field. Due to collisions

some ions can be trapped in the potential well of the charged
particulates. The others finally reach the electrode surface.
Resonant charge exchange determines the ion mean free
path. At the pressure of interest the ion mean free path
lmfp is within a range of 50–200mm. Usually
lmfp5100 mm, corresponding to a pressure of 100 Pa, is
used for simulation.

In the transverse~horizontal! plane (x,y) the charged
grains are arranged in an infinite hexagonal lattice with the
translation vectorsrW 5n1aW 11n2aW 2, wheren1 andn2 are any
integers andaW 15(a,0) andaW 25(a/2,A3a/2) are the primi-
tive translation vectors of the Bravais lattice. The vertical
~longitudinal! direction is denoted withz ~see Fig. 1!.

The total potential of the crystal-plasma system is the sum
of the sheath potential and that of the two hexagonal layers
of charged particles. It is convenient to represent the poten-
tial of a lattice layer of negative point chargesw as
w(rW)5w0(z)1w1(rW). The potential w1(rW) describes the
negative point charges embedded in a horizontally uniform
sheet of compensating positive charges, described by a Dirac
d function in the vertical direction. The effect of the positive
sheet is neutralized byw0(z), where w0(z)5*w(rW ,z)drW .
The integration is performed over the transverse coordinates
rW 5(x,y), thusw0(z) is independent of the transverse coor-
dinates.

Using the Fourier transform over the translation vectors of
the lattice,w1(rW) can be written as the sum over the transla-
tion vectorsgW of the reciprocal lattice

w1~rW ,z!52 (
gW ,gÞ0

4peZ

gS
exp~2guzu!exp~ igW •rW !, ~1!

gW 5n1bW 11n2bW 2 , g5ugW u,

wherebW 15(2p/a,22p/A3a) andbW 25(0,4p/A3a) are the
primitive reciprocal translation vectors andS5A3a2/2 is the
area of an elementary cell. It is seen from Eq.~1! that for
large distancesz from a layer the potential depending on
transverse coordinates falls off exponentially with increasing
z. This means that an ion does not ‘‘feel’’ the pointlike struc-
ture of the lattice at distances from the lattice greater than a
certain valuez!. This characteristic lengthz! is determined
by the minimal value of the reciprocal lattice vector
gmin'2p/a51/z!. For our experimental conditions
z!'70 mm. This length is much shorter than the distance
from a layer to both the electrode and the quasineutral bulk
plasma. Therefore, one can neglect the influence of image
charges in the metallic electrode and the plasma. To calculate
w1 numerically according to Eq.~1! the Ewald technique
@22# is applied.

The plasma crystal is suspended in the sheath by an up-
ward directed electric-field forceZeE, which is balanced by
the gravitational forceMg. The longitudinal electric fieldE
is created by the two uniform crystal layers with a vertical
distanced as well as the ion and electron volume charge in
the plasma sheath. We use a common sheath model@23#
where the time-averaged volume charge density% is as-

FIG. 1. Sketch of the modeled system.
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sumed to be constant and independent of horizontal coordi-
nates. Solving Poisson’s equation for the time-averaged lon-
gitudinal electric fieldE

]E

]z
54p@%2% ld~z2z1!2% ld~z2z2!#, ~2!

with conditionE(z50)50 on the plasma-sheath boundary,
the longitudinal field in the sheath is

E~z!5H 4p%z, 0,z,z1

4p~%z2% l !, z1,z,z2

4p~%z22% l !, z.z2 ,

~3!

where% l5eZ/S is the negative 2D charge density of the
crystal layers andz1 and z2 are the distances from the
plasma-sheath boundary to the upper and lower layer, re-
spectively.%,z1 ,z2 are obtained from the condition of equi-
librium between gravity and the electric force for both layers
andz22z15d with the experimentally given interlayer dis-
tanced. The distance between the upper layer and the plasma
sheath boundary is thenz15d(1/21gM/4peZ% l), and this
condition allows, in principle, one to find the particulate
charge by measuring the position of the upper layer relative
to the plasma-sheath boundary@6#. The volume charge den-
sity is found as%5eZ/dS, which means that the interlayer
repulsion is completely compensated by the attraction of the
positive background contained between the two crystal lay-
ers. For a particulate floating potentialUf525 V the elec-
tric field E05Mg/Z at the particulate location is about 25
V/cm and the volume charge density is%52.63108

cm23, which is in agreement with measured values@6,7#.
Two kinds of forces acting on a particle due to the

particle-ion interaction are considered. First, ions hitting the
~completely absorbing! particulate transfer their momentum
to the particle, resulting in a force

FW 15E mivW ini~vW i•dsW !, ~4!

wheremi ,vW i ,ni are the mass, the velocity, and the density of
ions, respectively, anddsW is an orientated surface element of
the particle.

Second, the Coulomb interaction between ions and a par-
ticulate gives the contribution

FW 2
k5E eni~rW !¹W w1~rW ,z2zk!drW, k51,2. ~5!

The integration extends over the area of an elementary hex-
agonal cell. Note that the potentialw1 includes the ions in the
considered elementary cell as well as all periodic images.

The upper boundary of calculation regionz50 is set suf-
ficiently far upstream of the crystal. The ion density at the
upper boundary is fixed to a specific valuent>%. All forces
discussed below are proportional to this parameternt . The
lower boundary of the computation region represents a com-
pletely absorbing electrode. Horizontally, the computation
region is chosen as an elementary cell of the hexagonal lat-
tice with periodic boundary conditions. In the computation
cell, finally there is one particulate for each layer. Ion

charge-exchange collisions are taken into account. Statistic
errors of the calculation are given in some of the figures.

III. RESULTS OF MONTE CARLO CALCULATIONS

To understand the resulting ion distribution, first two lim-
iting cases of the ion motion are considered:~a! the drift
regime (lmfp→0) and~b! the collisionless case (lmfp→`).
Due to the attraction of the ions by the particles the ions are
deflected. For the drift regime ion trajectories mainly termi-
nate on the upper particulates. Immediately behind them
shadowed areas of low ion density appear@Fig. 2~a!#. These
rarefaction areas extend to the lower particles. The opposite
behavior is found in the collisionless limit@Fig. 2~b!#. Re-

FIG. 2. Ion trajectories~a! in a pure drift regime,~b! in a pure
collisionless regime, and~c! for a collisional case with ion mean
free pathlmfp5100 mm due to ion charge-exchange collisions,
which are indicated by kinks in the trajectories. The particle posi-
tions arez5500 mm ~upper! andz5860 mm ~lower!.
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gions of enhanced ion density occur below the upper par-
ticles and extend over a wide range ofz. The kinetic energy
of the ions is so high that the ions are not captured by the
particles. This leads to ion focusingbelow the particles. The
gas pressure range of 50–200 Pa is an intermediate case
(lmfp 5 50–200mm is smaller but of the order ofd), where
the ion velocity is not a local function of the electric field. A
small sample of ion trajectories obtained by Monte Carlo
technique for this case are given in Fig. 2~c!.

The calculated ion density distributions for aligned par-
ticles are given in Figs. 3 and 4. Figure 3 shows the ion
density averaged over transverse coordinates (x,y) as a func-
tion of the vertical position. In general, the density decreases
towards the electrode since the ions are accelerated in the
sheath. The maxima in ion density are associated with the
positions of the particles in the upper (z15500 mm! and
lower layer (z25860 mm!. It is seen that with increasing
pressure~reducedlmfp) the ion focusing effect is diminished.
The maxima in ion density are not very large because the
density is averaged over the transverse plane and the regions
of enhanced ion density are localized, as can be seen in Fig.
4. There contour plots of the ion density in the (r,z) plane
~averaged over azimuthal angle! for lmfp5100 mm are
shown. One can identify three different regions. In the clos-
est vicinity of the particulates~region I! the ion density is
strongly enhanced~by a factor of 10! due to trapping of ions
in the potential well of the particles. The size of the potential
well L in the direction of ion flow can be estimated by equat-
ing the Coulomb field of the particles and sheath electric
field at the particles position.L5AeZ/E0,100 mm for our
conditions. As pointed out above, the transverse component
of the field of a layer quickly decays with distance. There-
fore, if an ion is outside the potential well, i.e.,
uz2z1u>L;z!, ion-neutral collisions weakly deflect an ion
in the transverse direction.

Below the particulates, a region of enhanced ion density
~ion cloud! is formed by focused ions~region II!. There the
ion density attains a few times its unperturbed value. The
formation of this ion cloud is one of the crucial findings of

the MC calculations. It has been shown here that the ion
focus region found in collisionless systems@19,20# is also
preserved under the more realistic conditions considering
collisions and the presence of a lower particle layer. This
ion-cloud region provides attractive forces for the negatively
charged particles. In region III the ion density in radial di-
rection changes weakly. The ions almost do not feel the pres-
ence of the particulates. There one finds only the usual re-
duction of ion density in the longitudinal direction due to ion
acceleration in the sheath.

In the layered structure with vertical alignment there is no
‘‘net’’ horizontal force acting on particulates due to the hex-
agonal symmetry in the horizontal direction, but small devia-
tions from the aligned positions will induce horizontal repul-
sive ~due to particle-particle interaction! and attractive forces
~due to particle–ion-cloud interaction! on the particles. In
order to study the stability of this arrangement calculations
of the ion distribution and the resulting forces for different
displacements of the lower-layer lattice relative to the upper
layer are performed. From the above-mentioned estimates
one can expect that the lower layer is able to influence ion
trajectories only foruz2z2u,z!. This is substantiated in Fig.
5, where the regions of maximum ion density are plotted for
various interlayer planes. Here the lower particulates are
shifted by 0.25a in the x direction from their ‘‘aligned’’
equilibrium positions. The contour lines comprise the re-
gions where the ion density is more than 90% of the maxi-
mum ion density for that interlayer plane. One can see that
even though the lower particulates are shifted, the ion clouds

FIG. 3. Ion density distribution averaged over the (x,y) plane
for different ion mean free paths. The vertical dashed lines indicate
the particle positions atz5500 mm andz5860 mm.

FIG. 4. Ion density distribution in cylindrical coordinates aver-
aged over azimuthal angle in the case of alignment for
lmfp5100 mm. The numbers give the ion density in units ofnt .
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remain located directly below the upper particulates. Only
very close to the lower particle layer~curve 3! a displace-
ment of the ion cloud becomes observable. Hence the ion
cloud depends only on the obstacle on the upstream side, but
stays nearly unaffected by the structure on the downstream
side. The fact that the ion cloud is found to be coupled with
the upper particle is the second main finding of the MC
calculations.

The resulting transverse forces on the particles of the
lower layer calculated from the MC model are shown in Fig.
6 as a function of the displacement from the aligned posi-
tions in thex direction. The most interesting result is the
appearance of negative, i.e., restoring forces~curves 1–3,
symbols!. These forces arise from the attraction of the lower
particles by the ion clouds. The force becomes zero at dis-
placementsdx50,a/2, as expected from symmetry. Any per-
turbation of these equilibrium positions leads to a restoring
of the system to the aligned structure withdx50. The forces
reach their maximum atdx50.2a–0.25a depending on the
ion mean free pathlmfp . A pressure reduction leads to a
stronger restoring force. For comparison, the pure Coulomb
repulsion force between the layers is included~curve 4!. One
can see that the restoring force by the ion-cloud attraction
decisively exceeds the dust particle Coulomb repulsion.
Therefore the aligned structure of the crystal observed in the
experiment is favored over the hcp crystal structure. It is
important to note that such transverse attractive forces by the
ion clouds do not exist for the particles of the upper layer
since the ion cloud is located below the upper particle.

For further analytical analysis each ion cloud is replaced
by a positive point charge of chargeZi located below the
upper particle at a distanced2di . Since the position of the
ion cloud only weakly depends on the lower-layer position,

as seen above, the positive point charge is treated as rigidly
connected to the upper particle. The values ofZi anddi are
chosen in such a way that the restoring forces due to the
positive point charges mimic the restoring forces found from
the MC calculations for the different values of the displace-
mentdx within the errors of the MC results~see Fig. 6, solid
lines!. In the range of pressures set by the experiment, for the
effective chargeZi values of 0.3–0.6Znt /%, and for the
distancedi values of 0.4–0.6a are obtained~see Table I!.
For characteristic valuesnt /% 5 1–3 the effective positive
charge matches the charge of the particulates within an order
of magnitude. However, for the lower particulates the attrac-
tion by the ion cloud exceeds the repulsion with upper par-
ticulates sincedi,d. The replacement of the ion cloud by
positive point charges for a ‘‘static’’ displacement of the
lower-layer particles is justified since the ion relaxation time
is much shorter than the period of dust oscillations. Of
course, ion-ion interaction that is not taken into account in
the MC model above will diminish the effective charge of

FIG. 5. Shifting of the ion cloud in the (x,y) plane for different
z. The displacement of lower particulates from the aligned position
is 0.25a. The contour lines comprise the region of highest ion den-
sity in each plane:~1! plane of the upper layerz5z1, ~2! z50.4d
above the lower layer plane,~3! z 5 0.2d above the lower layer
plane, and~4! plane of the lower layerz5z2. Dots and crosses
indicate the upper and lower particle positions, respectively.

FIG. 6. Transverse restoring forces from the ion clouds acting
on the lower particulates as a function of the displacement in the
x direction for different ion mean free paths.~1! lmfp550 mm,
Zi50.58Zni /r, di50.49a; ~2! lmfp5100 mm, Zi50.43Zni /r,
di50.40a; ~3! lmfp5200mm, Zi50.44Zni /r, di50.38a. Symbols
denote the MC results, solid lines indicate the forces for positive
point charges with parametersZi ,di replacing the ion cloud.~4!
The dashed line is the repulsion force between two layers for
nt5%.

TABLE I. MC results forZi ,di for various simulation param-
eters.

lmfp (mm! 2U ~eV! d (mm! Zi /Znt%
21 di /a di /d

50 5 360 0.58 0.49 0.61
100 5 360 0.43 0.40 0.50
100 5 450 0.42 0.43 0.53
100 3 360 0.25 0.35 0.44
200 5 360 0.44 0.38 0.47
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the ion cloud. But since the particle-particle repulsion is con-
siderably less than the particle–ion-cloud attraction it is rea-
sonable to assume that the qualitative picture described
above does not change after considering ion-ion interactions.
Since the radial component of the lattice electric field de-
creases exponentially with distance, the restoring force may
exist even in the case when the effective ion-cloud charge is
much less than that of the particulates.

The main results of the MC simulations are summarized
here to enlighten the derivation of the analytical model. Be-
low the particles of the upper layer a positive space-charge
region is formed, which results in attractive forces for the
lower particles. This ion cloud can be replaced to a good
approximation by a single positive point charge of charge
Zi and distancedi above the lower layer. The ion cloud is
found to be located almost directly below the upper particle
independent of the position of the lower particles. Therefore
the positive point charge can be treated as rigidly connected
to the upper particle. Furthermore, due to the fact that the ion
cloud is located below the upper particle no attractive forces
on the upper particles exist. These points found as results
from the MC calculations are the main ingredients of our
analytical model.

IV. ANALYTICAL CRYSTAL MODEL

A model is presented here that allows us to describe the
dust crystal structure and stability analytically. The crystal
instability leading to the heating of the dust particles is
treated in a linear stability analysis. In the linear approxima-
tion the motion of the particulates in the longitudinal (z) and
transverse (x,y) directions is decoupled, since for longitudi-
nal displacements the transverse forces acting on the particu-
lates remain zero due to the symmetry of the system. This is
confirmed by experimental observations@11,13#, which show
that the amplitudes of the transverse particulate oscillations
are much larger than those of the longitudinal motion. There-
fore, we can restrict the analysis of the particle motion to the
planerW ik5(xik ,yik) at fixed longitudinal coordinatez, where
the indexi denotes the number of a particulate in a crystal
layer andk51,2 denotes the upper (k51) and lower layer
(k52). To calculate the particulate motion the particle-
particle interaction and the influence of ions and neutral gas
are taken into account. We consider the particle-particle in-
teraction and particle-ion interaction explicitly. The particle-
ion interaction is approximated by the particle–positive-
point-charge interaction discussed above. The influence of
electrons in the sheath can be accounted for as an isotropic
screening. Forces from the particulate–neutral-gas collisions
are not treated as random in our model, therefore the kinetic
energy of particulates is zero in the equilibrium state, but
these collisions are considered as velocity-dependent friction
forces@21#.

Then the Newton equations for our system can be written
as

d2rW ik
dt2

5
FW ik

M
2n

drW ik
dt

, ~6!

where n is the friction constant andM is the particulate
mass. The forcesFW ik5FW ik,pp1FW ik,pi acting on the particu-

lates are due to particulate-particulateFW ik,pp and particulate-
ion FW ik,pi interaction. The particulate-particulate forces can
be written as usual asFW ik,pp52]Upp /]rW ik , where

Upp5(
i. j

(
k51

2

U~ urW ik2rW jku!1(
i , j

U~ urW i12rW j21eW zdu!

~7!

is the total potential of particulate-particulate interaction and
eW z is the unit vector in longitudinal direction. The first term
describes the interaction of particles in the same layer and
the second gives the interaction between particles in the up-
per and lower layers. The interparticle potentialU consid-
ered here is a pure Coulomb potentialU(r )5e2Z2/r only.
Debye-Hückel potentials can be used to account for electron
screening. But since the electron screening length under the
experimental conditions is of the order of 1a–4a the differ-
ence between Coulomb and Debye-Hu¨ckel potentials is
small. Screening by ions leads in a first approximation only
to a renormalization of the dust particle charge@24#.

It was found from the Monte Carlo results that the
particle-ion interaction is negligible for the upper particle
since the ion cloud is located directly below the upper par-
ticle. For the lower particle the interaction with the ions is
approximated by the interaction with a positive point charge.
Therefore, the particulate-ion forces can be written as
FW ik,pi52dk2]Upi /]rW ik , whereUpi is the potential of the
positive point charges replacing the ion clouds below the
upper particulates. The Kroneckerd ik provides that the at-
traction is acting on the lower particles only. Then we can
describe both the ion-particulate and particulate-particulate
interactions by effective pair potentials. This is the main as-
sumption of our model. By this means, the potential of the
ion cloud can be written as

Upi52e(
i , j

U~ urW i12rW j21eW zdi u!, e5Zi /Z. ~8!

The potential is that of a positive point chargeZi situated at
a distanced2di below the upper particulate as found from
the MC results. Note the differences betweenUpi and the
second term inUpp decribing the interaction of the lower-
layer particles with the point charges and with the particles
of the upper layer, respectively.Upi is negative~attractive!
and is evaluated at a vertical distancedi rather thand, but the
positionsr i1 are the same for the upper particle and for the
positive point charge since they are treated as rigidly con-
nected.

The total force on the particles is then

FW ik52
]Upp

]rW ik
2dk2

]Upi

]rW ik
. ~9!

Note that for the forces given by the Eq.~9! Newton’s third
law actio 5 reactio is not valid. This is because of the ions
that give the essential contribution to the forces acquire their
momentum in the external electric field and lose it in the
collisions with gas atoms. The symmetry breaking by the
ions streaming from above through the crystal leads to the
nonreciprocity of the forces. This situation is typical foropen
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system, which cannot be described by any Hamiltonian. The
breaking of Newton’sactio5reactio law is the main reason
for the heating mechanism of the particles. In contrast, all
Hamiltonian systems without friction conserve their total en-
ergy. Hamiltonian systems with friction achieve a metastable
state with zero kinetic energy.

V. CRYSTAL INSTABILITY

A. General results

Now a linear stability analysis of the system described by
Eqs. ~6! and ~9! is performed. Therefore small deviations
ja i ,k5zak(qW )exp(lt1iqW•rW ik) from the vertical aligned posi-
tions r ik are considered, whereqW is the spatial wave vector
of the displacement.xa ,a51,2, indicates the directions
x,y. Substituting this into Eq.~6!, we find the values of
zak as the eigenvectors of the dynamical matrix

Aak,bn52
1

M (
rW j5rW i1rW

S ]2Upp

]xa i ,k]xb j ,n

1dk2
]2Upi

]xa i ,k]xb j ,n
DeiqW •~rW j2rW i !, ~10!

where the summation is performed over all translation vec-
tors rW of the hexagonal lattice. Since the dynamical matrix
~10! is expressed through the lattice sums, a numerical tech-
nique is necessary to obtain its eigenvalues. An expanded
form of the dynamical matrix can be written as

A5S 2Wab1Sab~0! 2Sab~qW !

2Sab~qW !1eDab~qW ! 2Wab1Sab~0!2eDab~0W !D ,
where

Wab5
1

M(
rW Þ0

S dab

r

]U~r!

]r
1
xaxb

r

]

]r

1

r

]U~r!

]r D
3@12exp~ iqW •rW !#, ~11!

Sab(qW )5Cab(qW ,d), Dab(qW )5Cab(qW ,di), and

Cab~qW ,z!5
1

M(
rW

S dab

r

]U~Ar21z2!

]r

1
xaxb

r

]

]r

1

r

]U~Ar21z2!

]r D exp~ iqW •rW !,

~12!

with summations over the translation vectorsrW of the lattice.
Sab describes the~repulsive! interaction between the two
particle layers seperated by a vertical distanced andDab the
~attractive! interaction between the lower layer and the layer
of the positive point charges with a vertical distancedi .

Note that for our open system the dynamical matrix~10!
is not Hermitian and its eigenvalues are generally complex.
The matrixWab describes the behavior of a layered system,
in which the two layers are noncoupled. A technique for
calculatingWab and its eigenvalues for the two-dimensional

Wigner crystal with a Coulomb interaction between particu-
lates is given in Ref.@25#. For the calculation of the matrix
Cab for Debye-Hückel potentials Eq.~12! can be used di-
rectly. But for Coulomb potentials this sum converges very
slowly. Therefore, the Fourier transform of Eq.~12! with fast
convergence is taken

Cab~qW ,z!5
2pe2Z2

MS (
gW

~ga1qa!~gb1qb!

ugW 1qW u

3exp~22pugW 1qW uz!, ~13!

where the summation is performed over all translation vec-
torsgW of the reciprocal lattice.

Note that finding the spectrum of the matrix~10! allows
us to treat the behavior of all eigenmodes of the dust crystal.
Since it is the aim of this study to investigate the instability
mechanism of the dust crystal, we restrict the problem to
finding only those eigenvalues and eigenvectors of the dy-
namical matrix that have the maximum value of the real part
Re(l). The eigenvaluesl of the system~6! are given by the
relation

lm
1,25

2n6An214hm

2
, ~14!

wherehm , m51, . . . ,4, are theeigenvalues of the dynami-
cal matrixA. The analysis of Eq.~14! allows us to obtain
some general statements about the influence of friction on
the crystal stability. Depending onh there are three possible
types of solutions. For Re(h).0 the aligned situation is ab-
solutely unstable for any values of the friction constant. For
Re(h),0 the imaginary part Im(h) of the eigenvalue be-
comes important. For Im(h)50 the alignment is always
stable. For Im(h)Þ0 there is a critical value of frictionn!,
above which the system is aligned and below which the sys-
tem will be oscillatory unstable, i.e., it shows oscillations
about the aligned positions with growing amplitude. In con-
trast, for a Hamiltonian system the eigenvalues of the dy-
namical matrix are always real, so the system is either stable
or absolutely unstable independent of friction. The valuen!

and corresponding oscillation frequencyv! are easily de-
rived from relation~14!

n!5Im~h!/v! ,v!5A2Re~h!. ~15!

The eigenvaluesh of the dynamic matrixA are obtained
numerically. We normalize distances to the interparticle dis-
tancea and the time to the plasma frequency of the Wigner

crystal vpc5A4pe2Z2/Ma3. Then the system characteris-
tics can be analyzed with the unitless parametersn/vpc , e,
d/a, di /a, and r d /a. Following the experimental results
@11,13#, the interlayer distance is set tod/a50.8.

The critical value of the damping constantn! and the
frequencyv! as functions of the amplitudeq of the wave
vectorqW are shown in Fig. 7 for different orientations. It is
well known @25# that only the values of the wave vector
lying inside the irreducible element of the two-dimensional
first Brillouin zone ~see inset in Fig. 7! need to be consid-
ered. The most unstable mode~i.e., the one with the highest
n!) is seen to be orientated in direction 3. This corresponds

54 4161ALIGNMENT AND INSTABILITY OF . . .



to the direction connecting two neighboring particles in the
direct hexagonal lattice. The incrementg5Re(l) of the in-
stability as a function of wavelength is given in Fig. 8 for
different values of the friction constant. For small deviations
of the friction constantdn from its critical value, the eigen-
value has the form

l5 iv!2
iv!

n!1 iv!
dn.

That means that near the critical friction the frequency
Im(l) weakly depends on the friction@see Fig. 12~a! for
comparison with experiment# and Re(l)}2dn. Thus the
increment of the instability Re(l) increases linearly when
the gas pressure is reduced below the critical value since the
friction constant is proportional to the gas pressure@21#.

B. Results for a definite orientation of the wave vector

From Fig. 7 it is seen that the critical frictionn! and
frequencyv! only very weakly depend on the orientation of
the wave vector. This is found to be true for a wide range of
parameters. Therefore we treat the particular caseqW 5(q,0)
~curve 1 in Fig. 7! in more detail. For this specific wave

vector the nondiagonal elementsWaÞb , SaÞb , andDaÞb
vanish and the eigenvaluesh can be obtained analytically

h1,2
a 52Waa1Saa~0!2

e

2
Daa~0!

6AS e

2
Daa~0! D 22Saa~q!@eDaa~q!2Saa~q!#.

~16!

The two transverse modesxa5x and xa5y modes are
decoupled. It should be emphasized that forq50 the eigen-
valuesh1,2

a are real and the crystal structure may be either
stable or absolutely unstable. Unstable oscillations appear for
finite values of the wavelength. It can be shown that waves
in the x direction become unstable first.

To investigate the conditions for alignment the term
eDxx(0) has to be analyzed. This term is the first derivative
of the restoring forceFx in the x direction. When the par-
ticulates of the two layers move relative to each other as a
whole (q 5 0!, the eigenvalueh52Saa(0)2eDaa(0) re-
mains negative for

e.2Saa~0!/Daa~0!. ~17!

Note that the restoring force on the lower particulates out-
weights the repulsion for the weaker condition
e.Saa(0)/Daa(0). This means that vertical alignment ex-
ists only when the radial attraction due to the positive ion
clouds is at least twice as large as the repulsion between the
negatively charged particulates. Otherwise the alignment will
be unstable for any value of friction and a transition to a
close-packed lattice takes place. If condition~17! is fulfilled,
then

v05AeDaa~0!22Saa~0!, ~18!

FIG. 7. Critical value of the~a! friction constantn! and ~b!
corresponding oscillation frequencyv! versus the amplitude of the
wave vector for different orientations. In the inset the first Brillouin
zone for the two-dimensional hexagonal lattice is shown and the
orientations of the wave vector are indicated. The reduced effective
ion cloud charge ise50.5 and the distance isdi50.4a.

FIG. 8. Increment of the instability as a function of the ampli-
tude of the wave vector of orientation 3~inset of Fig. 7! for differ-
ent values of the friction. Other parameters are the same as for Fig.
7.
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wherev0 is the frequency of damped oscillations of the lay-
ers relative to each other. From the Monte Carlo results~Fig.
6!, one can see that the ion-particulate restoring force is
much larger than the repulsive force from upper particulates
andeDaa(0)@Saa(0). Consequently, the vertical alignment
is stable and for a crude estimation of the damped frequency
v0 one can use the first derivative of the restoring force.
Since under this conditionv0

2}e, in further discussions the
dependence on the frequencyv0 rather than on the reduced
ion-cloud chargee is used to describe the particulate-ion
interaction. The dependence of the frequencyv0 on the dis-
tance between the ion cloud and the lower particulates can be
obtained on the basis of results given in Fig. 9.@Note that
Caa(0,d)5Saa(0) andCaa(0,di)5Daa(0); see Eq.~12!#.

For a Coulomb potential and 2pz@a the first term
in the sum ~13! is sufficient to calculateCaa(0,z)
'4pvpc

2 exp(24pz/A3a) @see the dashed curve in Fig. 9~a!#.
The oscillation frequency of the layers relative to each other
is proportional to the square root of the ion-cloud charge and
decreases almost exponentially with the distance between the
ion clouds and the lower layer.

For nonzero values of the wave vector, the instability of
the dust crystal will occur with decreasing gas pressure if the
expression under the square root in Eq.~16! is negative, i.e.,

FIG. 9. ~a! CoefficientsCxx(0,d) as a function of distance for
the Coulomb interaction~solid line!. The dashed curve corresponds
to the analytical approximation.~b! RatioCxx(q,d)/Cxx(0,d) as a
function of the amplitude of the wave vector directed along thex
axis ~line 1, inset of Fig. 7! for the different distances between ion
clouds and the lower layer. FIG. 10. ~a! Amplitude of the wave vector corresponding to the

most unstable situation,~b! associated frequencies,~c! ratio of os-
cillation amplitudes of the lowerAl and upperAu particles, and~d!
phase shift of the oscillation between the upper and the lower layer
as a function of the characteristic frequencyv0 for differentdi .
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B5Saa~q!@eDaa~q!2Saa~q!#2S e

2
Daa~0! D 2.0.

~19!

SettingB50, we obtain two critical values of the reduced
charge of the ion cloud

e1,25
Saa~q!

Daa~0!
@Daa~q!6ADaa~q!22Daa~0!2#. ~20!

For e,e1 and e.e2, B is negative and the system will be
stable for any value of friction. Thus the enhancement of the
ion-particulate interaction can lead to a stabilization of the
dust crystal. The critical values of friction and the corre-
sponding~undamped! oscillation frequency are given by the
relations

n!5AB/v! , v!5AWaa1v0
2/2. ~21!

One can see that the frequency of the unstable mode is
higher than the frequencyAWaa for the crystal with non-
coupled layers.

Since there is some uncertainty in the effective ion charge
e and the distancedi , which are calculated above on the
basis of a non-self-consistent approach in the MC model, the
influence of these parameters on the stability of a dust crystal
is investigated here. Calculations in a wide range ofdi and
v0 were performed. First, we determined the most unstable
wave vectorq!, i.e., the wave vector with the highest critical
value of the friction constantn! @see Fig. 10~a!#. Hereafter
the oscillation frequencyv! according to Eq.~21! is found
as a function ofv0 ,di for the given valueq! @see Fig. 10~b!#.
Except for smallv0 ,di , the most unstable wave vector is
q!a'1.5 and depends only weakly on the parameters of the
ion cloud. For these values of the wave vector the frequency
of the crystal plasma wavev! is almost independent of the

wavelength.v! lies in a range of 0.8vpc–1.4vpc and in-
creases withv0 @see Fig. 10~b!#. Note that the system is most
unstable for short wavelengths and hence the oscillations
would be also expected for the liquid state, in which short-
range order still exists. The most important characteristic of
the instability is the critical value of frictionn!, which is
shown in Fig. 11. For a fixed distance between the ion cloud
and the lower particulaten! reaches its maximum value for a
definite value of the charge of the ion cloude!. Neglecting
the dependence ofv! on v0 in the denominator of the rela-
tion ~21!, we estimate the value ofe!52Saa(q)Daa(q)/
Daa(0)

2 from the condition of maximum ofAB @Eq. ~19!#.
Substituting this into Eq.~18!, one obtains the value of the
frequency

v0
!'ASxx~q!!Dxx~q!!/Dxx~0!22Sxx~0!,

for which the dust crystal is most unstable. Since the ratio of
Dxx(q!)/Dxx(0) increases withdi @see Fig. 9~b!#, both the
value ofv0

! and the critical frictionn! increase withdi .

C. Comparison with experiment

For the experimental conditions of the dust crystal the
Monte Carlo calculations give the valuedi /a 5 0.35–0.5
depending on gas pressure and particulate charge. At a gas
pressure of about 100 Pa the reduced charge of an ion cloud
is in the range 0.3nt /%–0.4nt /%. For typical values of

FIG. 11. Contour plot of the critical value of the friction con-
stant in units ofvpc over the characteristic frequencyv0 and the
distancedi .

FIG. 12. Experimental values of the oscillation characteristics of
the vertical aligned pairs as a function of gas pressure.~a! the fre-
quency,~b! the amplitude of the lower particleAl and the ratio of
the amplitudesAl /Au , ~c! the phase shift between the upper and the
lower particle, and~d! the measured dust temperature.
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nt /% 51–3 the frequencyv0 ranges from 0.7vpd to
1.1vpc . The corresponding values of the critical friction are
n!50.25vpc–0.5vpc .

For experimental conditions the typical frequencyvpc are
predicted to bevpc/2p 510–20 Hz. Unstable oscillations
develop with characteristic frequenciesv/2p57–22 Hz at
critical friction in the range 2p3(2.5–10) s21 correspond-
ing to a gas pressure of 30–150 Pa in helium@21#. From
experimental data the critical value of friction is 2p35
s21 ~80 Pa! with a frequency of about 13 Hz@Fig. 12~a!#,
both within a range of the theoretical prediction. To carry out
more precise estimations for the critical friction one has to
use a self-consistent approach for ion motion simulation and
more accurate experimental data for the dust particulate
charge.

For further comparison of our model with the experimen-
tal results, the phase shift and the ratio between amplitudes
of the particulate oscillation in the upper and lower layers is
considered. For the simplest caseqW 5(q,0), the ratio of the
eigenvectors of perturbation is given by

zx2
zx1

5
eDaa~0!/21 iAB

Saa~q!
. ~22!

The ratio of the amplitudes of oscillation and the phase
shift versusv0 for different distances between the ion cloud
and lower layer are shown in Figs. 10~c! and 10~d!, respec-
tively. The oscillation amplitude of the lower particles is
larger by a factor of 1.5–2.5@experimentally 2–3, see Fig.
12~b!# than that of the upper particle. The absolute value of
the oscillation amplitude increases with reduced pressure, fi-
nally leading to a dramatic increase in the dust temperature
as one can see from Figs. 12~b! and 12~d!. Since the imagi-
nary part in Eq.~22! is less than its real part, the difference in
the amplitudes increases almost linearly withv0

2, which is
proportional toeDaa(0). Both the phase shift and the critical
value of friction are proportional toAB. Therefore their be-
havior with changed system parameters has many features in
common. In particular, they tend to zero for the same
values of v0 ,di . For the experimental conditions
v050.7vpc–1.1vpc anddi50.35d–0.5d the phase shift lies
in the range 25°–50°@experimentally 30°– 80°, Fig. 12~c!#

and increases with distance between the ion cloud and the
lower layer, but decreases with the characteristic frequency
v0.

The oscillations and the increase of dust temperature have
also been observed for smaller particles in rf discharges in
krypton by Thomas and Morfill@12#. The onset of instability
occurs at a lower gas density. This can be understood since
the friction exerted by krypton is larger than that of helium at
the same pressure and the friction constantn is larger for
smaller particles.

VI. CONCLUSION

We have presented Monte Carlo calculations of the ion
motion through a two-layer dust crystal located in the elec-
trode sheath of a rf discharge in helium. The transverse de-
flection of ions by the electric field of the upper dust particles
results in the formation of regions of enhanced ion space-
charge density below the upper particles. The attractive
forces of these ion clouds on the lower-layer particles are
shown to lead to the vertical alignment as observed in many
experiments. From these MC results an analytical model for
the investigation of the stability of such an arrangement was
derived. This model treats the many-body ion system as an
effective pair potential resulting in a non-Hamiltonian sys-
tem with nonreciprocal forces on lower and upper particles.
The nonreciprocity is induced by the symmetry breaking of
the ions streaming from above through the crystal. From the
model the vertical alignment is found to become unstable,
leading to oscillations of the aligned particles below a thresh-
old value of friction. Furthermore, the characteristics of these
unstable oscillations such as the wave frequency, the ratio
between amplitudes of upper and lower particulates, and the
phase shifts between the particle oscillations have been de-
termined. These values are in close agreement with that
found in experiments. So the melting transition is explained
by the onset of self-excited oscillations due to a plasma-
induced instability. The oscillations are the cause for the
melting transition, not an effect of the phase transition.
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